Перевод: с русского на английский

с английского на русский

конечное напряжение

  • 1 конечное напряжение

    1. end-point voltage

     

    конечное напряжение

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > конечное напряжение

  • 2 конечное напряжение

    1) Engineering: end-point voltage
    2) Construction: final stress
    3) Automation: terminal voltage
    4) Electrochemistry: cut-off voltage, final voltage

    Универсальный русско-английский словарь > конечное напряжение

  • 3 конечное напряжение

    Русско-английский исловарь по машиностроению и автоматизации производства > конечное напряжение

  • 4 конечное напряжение

    Русско-английский политехнический словарь > конечное напряжение

  • 5 конечное напряжение разряда химического источника тока

    1. final voltage
    2. end-point voltage
    3. end-of-discharge voltage
    4. end voltage
    5. cut-off voltage

     

    конечное напряжение разряда химического источника тока
    конечное напряжение

    Заданное напряжение, ниже которого химический источник тока считается разряженным.
    [ ГОСТ 15596-82]

    конечное напряжение разряда

    Заданное напряжение, при котором разряд батареи считается законченным.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]

    EN

    end-of-discharge voltage
    final voltage
    cut-off voltage
    end-point voltage

    specified voltage of a battery at which the battery discharge is terminated
    [IEV number 482-03-30]

    FR

    tension finale, f
    tension d'arrêt, f

    tension spécifiée pour laquelle la décharge de la batterie est terminée
    [IEV number 482-03-30]

    Тематики

    Классификация

    >>>

    Синонимы

    EN

    DE

    FR

    • tension d'arrêt, f
    • tension finale, f

    Русско-английский словарь нормативно-технической терминологии > конечное напряжение разряда химического источника тока

  • 6 Конечное напряжение разряда

    Electrical engineering: EOD Voltage

    Универсальный русско-английский словарь > Конечное напряжение разряда

  • 7 конечное напряжение разряда

    Electrical engineering: EOD Voltage

    Универсальный русско-английский словарь > конечное напряжение разряда

  • 8 конечное напряжение разрядки

    Универсальный русско-английский словарь > конечное напряжение разрядки

  • 9 конечное напряжение сжатия

    Универсальный русско-английский словарь > конечное напряжение сжатия

  • 10 конечное напряжение разрядки

    Русско-английский исловарь по машиностроению и автоматизации производства > конечное напряжение разрядки

  • 11 напряжение

    1) effort

    2) potential
    3) pressure
    4) strain
    5) stress
    6) tension
    7) voltage
    амплитудное напряжение
    безопасное напряжение
    внутреннее напряжение
    входное напряжение
    вызывать напряжение
    выключать напряжение
    выпрямленное напряжение
    высокое напряжение
    выходное напряжение
    вязкостное напряжение
    генераторное напряжение
    гетеродинное напряжение
    главное напряжение
    действительное напряжение
    действующее напряжение
    диффузионное напряжение
    единичное напряжение
    закалочное напряжение
    замедляющее напряжение
    зарядное напряжение
    знакопеременное напряжение
    испытательное напряжение
    касательное напряжение
    кольцевое напряжение
    концентрировать напряжение
    линейное напряжение
    магнитное напряжение
    напряжение анода
    напряжение возбуждения
    напряжение возникает
    напряжение вольтодобавки
    напряжение впадины
    напряжение гашения
    напряжение гетеродина
    напряжение дополнительное
    напряжение зажигания
    напряжение запирания
    напряжение искрения
    напряжение нагрузки
    напряжение накала
    напряжение накачки
    напряжение насыщения
    напряжение от торможения
    напряжение отражателя
    напряжение отсечки
    напряжение переброса
    напряжение пика
    напряжение питания
    напряжение погасания
    напряжение под нагрузкой
    напряжение постоянное
    напряжение при изгибе
    напряжение при кручении
    напряжение при перегибе
    напряжение при прогибе
    напряжение при разрыве
    напряжение при растяжении
    напряжение при сдвиге
    напряжение при сжатии
    напряжение при срезе
    напряжение при ударе
    напряжение пробоя
    напряжение прокола
    напряжение развертки
    напряжение рассогласования
    напряжение сети
    напряжение сетки
    напряжение сигнала
    напряжение синхронизации
    напряжение смещения
    напряжение стабилизации
    напряжение стирания
    напряжение сцепления
    напряжение тренировки
    напряжение трогания
    напряжение формования
    напряжение шумов
    номинальное напряжение
    обратное напряжение
    объменое напряжение
    одноосное напряжение
    окружное напряжение
    оперативное напряжение
    опорное напряжение
    остаточное напряжение
    отклоняющее напряжение
    первичное напряжение
    переключающее напряжение
    пилообразное напряжение
    плавающее напряжение
    поверхностное напряжение
    повышать напряжение
    подавать напряжение
    полное напряжение
    понижать напряжение
    пороговое напряжение
    постоянное напряжение
    предварительное напряжение
    предельное напряжение
    прикладывать напряжение
    пробивное напряжение
    простое напряжение
    прямое напряжение
    разрушающее напряжение
    распределять напряжение
    расчетное напряжение
    реактивное напряжение
    синфазное напряжение
    скалывающее напряжение
    складывать напряжение
    снимать напряжение
    средневыпрямленное напряжение
    стабилизировать напряжение
    температурное напряжение
    тепловое напряжение
    термическое напряжение
    тормозящее напряжение
    удельное напряжение
    управляющее напряжение
    упругое напряжение
    усадочное напряжение
    ускоряющее напряжение
    усталостное напряжение
    фазовое напряжение
    фокусирующее напряжение
    хронирующее напряжение
    цепное напряжение
    шаговое напряжение
    эффективное напряжение

    входное напряжение оптопарыinput voltage


    вызывать чрезмерное напряжениеput unnecessary strain on


    выходное остаточное напряжение оптопарыoutput rest voltage


    конечное напряжение разрядаfinal voltage


    магнетрон настраиваемый напряжениеvoltage-tuned magnetron


    местное напряжение сдвигаlocal shear


    напряжение бортовой сетиairborne voltage


    напряжение запирания электронно-оптического преобразователяblocking bias


    напряжение относительно землиvoltage to earth


    напряжение отпирания лампыcut-on voltage


    напряжение отпирания по сеткеgrid base


    напряжение переменного токаalternating voltage


    напряжение постоянного токаdirect voltage


    напряжение тактовой частотыclock voltage


    напряжение холостого ходаopen-circuit voltage


    напряжение электрода электровакуумного прибораelectrode voltage


    напряжение электроного лучаbeam voltage


    обратное выходное напряжение оптопарыoutput reverse voltage


    преобразователь напряжение кодvoltage-to-number converter


    трансформатор повышает напряжениеtransformer steps up voltage

    Русско-английский технический словарь > напряжение

  • 12 конечное разрядное напряжение

    Electronics: final voltage

    Универсальный русско-английский словарь > конечное разрядное напряжение

  • 13 конечное статическое напряжение сдвига

    Универсальный русско-английский словарь > конечное статическое напряжение сдвига

  • 14 конечное разрядное напряжение

    ( аккумулятора) final voltage

    Русско-английский словарь по электронике > конечное разрядное напряжение

  • 15 конечное разрядное напряжение

    ( аккумулятора) final voltage

    Русско-английский словарь по радиоэлектронике > конечное разрядное напряжение

  • 16 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 17 емкость аккумулятора

    1. battery capacity
    2. ampere-hour
    3. AH

     

    емкость аккумулятора
    Способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Измеряется в ампер-часах или ватт-часах. В случае относительно быстрого разряда аккумулятора применяется более удобное понятие – мощность отдаваемая батареей при разряде до определенного порогового значения напряжения за определенный период времени.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    ampere-hour
    AH

    A figure indicating battery capacity, generally defined for 5, 10 or 20 Hours discharge time.
    AH figure should be divided by the discharge time to get the maximal discharge current.
    The AH capacity is a function of discharge time, decreasing at short backup times.
    Thus, 20H rated 10AH battery, may supply only 3.5AH for 15 minutes or 2.5AH for 5 minutes.
    Battery capacity also depends on temperature, aging, number and depth of discharge cycles, and preventive maintenance.
    [ http://www.upsonnet.com/UPS-Glossary/]

    См. также:
    - емкость химического источника тока
    - емкость аккумуляторной батареи

    Разрядной емкостью аккумулятора называется количество электричества, отдаваемого им при разряде до установленного конечного напряжения. Конечное разрядное напряжение стационарных свинцовых аккумуляторов составляет 1,8 В при длительных режимах разряда от 10-часового до 2-часового и 1,75 В при ускоренных режимах разряда от 1-часового до 0,25-часового. Разрядная емкость измеряется в ампер-часах (А ч) и получается умножением значения разрядного тока в амперах на время разряда в часах.
    Аккумуляторам присуща также зарядная емкость, которую они получают в процессе заряда от других источников электрической энергии.
    Разрядная емкость свинцового аккумулятора зависит от количества и формы его активных веществ, режима разряда и заряда, температуры электролита.

    Номинальная емкость стационарных свинцовых аккумуляторов определяется при 10-часовом разряде до напряжения 1,8 В при средней температуре электролита 20 'С.
    Емкость аккумулятора зависит от температуры электролита: чем ниже температура, тем меньше подвижность частиц электролита и емкость аккумулятора. Повышение температуры способствует увеличению емкости аккумуляторов. Однако при температуре +40 'С происходит коробление положительных пластин и резко увеличивается саморазряд аккумуляторов.
    Поэтому в аккумуляторных помещениях должна поддерживаться температура не ниже +15'С и не выше +35 'С.
    Емкость аккумулятора в течение срока его службы не остается постоянной. В начале эксплуатации происходит дополнительное образование активных масс на пластинах аккумулятора и его емкость увеличивается до 130% номинального значения. При дальнейшей эксплуатации емкость аккумулятора снижается из-за выкрашивания активной массы положительных пластин. Снижение емкости до 80—75 % номинального значения принято считать окончанием срока службы аккумулятора.
    [ http://static.scbist.com/scb/konspekt/98_AK.pdf]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > емкость аккумулятора

См. также в других словарях:

  • конечное напряжение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN end point voltage …   Справочник технического переводчика

  • конечное напряжение EV — 3.5 конечное напряжение EV (end point voltage EV): Установленное значение напряжения батареи, при котором разряд батареи прекращают. (IEV 482 03 30: 2004, модифицированный) Источник: ГОСТ Р МЭК 60086 1 2010: Батареи первичные. Часть 1. Общие… …   Словарь-справочник терминов нормативно-технической документации

  • конечное напряжение; EV — 3.2 конечное напряжение; EV (end point voltage; EV): Установленное значение напряжения замкнутой цепи батареи, при котором разряд батареи считается законченным. Источник: ГОСТ Р МЭК 60086 2 2011: Батареи первичные. Часть 2. Физические и… …   Словарь-справочник терминов нормативно-технической документации

  • конечное напряжение разряда химического источника тока — конечное напряжение Заданное напряжение, ниже которого химический источник тока считается разряженным. [ГОСТ 15596 82] конечное напряжение разряда Заданное напряжение, при котором разряд батареи считается законченным. [Инструкция по эксплуатации… …   Справочник технического переводчика

  • Конечное напряжение разряда батареи — Конечное напряжение разряда (final voltage, cut off voltage, end voltage) заданное напряжение, при котором разряд батареи считается законченным... Источник: ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ СТАЦИОНАРНЫХ СВИНЦОВО КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ В… …   Официальная терминология

  • конечное напряжение разряда — 3.14 конечное напряжение разряда : Заданное напряжение, при котором разряд батареи считается законченным. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Конечное напряжение разряда химического источника тока — 48. Конечное напряжение разряда химического источника тока Конечное напряжение Entlade Schluβspannung Заданное напряжение, ниже которого химический источник тока считается разряженным Источник: ГОСТ 15596 82: Источники тока химические. Термины и… …   Словарь-справочник терминов нормативно-технической документации

  • конечное (конечное разрядное) напряжение — 3.3 конечное (конечное разрядное) напряжение (final voltage; end of discharge): Установленное напряжение замкнутой цепи, при котором разряд аккумулятора или батареи считается законченным. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 15596-82: Источники тока химические. Термины и определения — Терминология ГОСТ 15596 82: Источники тока химические. Термины и определения оригинал документа: 8. Аккумулятор Akkumulator Гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60086-2-2011: Батареи первичные. Часть 2. Физические и электрические характеристики — Терминология ГОСТ Р МЭК 60086 2 2011: Батареи первичные. Часть 2. Физические и электрические характеристики оригинал документа: 3.12 выводы [(terminals (of a primary battery)]: Токопроводящая часть батареи, предназначенная для ее соединения с… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60086-1-2010: Батареи первичные. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60086 1 2010: Батареи первичные. Часть 1. Общие требования оригинал документа: 3.16 выводы (первичной батареи) (terminals (of a primary battery)): Токопроводящая часть батареи, предназначенная для ее соединения с внешней… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»